Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery.

نویسندگان

  • Cade B Fox
  • Yuhong Cao
  • Cameron L Nemeth
  • Hariharasudhan D Chirra
  • Rachel W Chevalier
  • Alexander M Xu
  • Nicholas A Melosh
  • Tejal A Desai
چکیده

The oral route is preferred for systemic drug administration and provides direct access to diseased tissue of the gastrointestinal (GI) tract. However, many drugs have poor absorption upon oral administration due to damaging enzymatic and pH conditions, mucus and cellular permeation barriers, and limited time for drug dissolution. To overcome these limitations and enhance oral drug absorption, micron-scale devices with planar, asymmetric geometries, termed microdevices, have been designed to adhere to the lining of the GI tract and release drug at high concentrations directly toward GI epithelium. Here we seal microdevices with nanostraw membranes-porous nanostructured biomolecule delivery substrates-to enhance the properties of these devices. We demonstrate that the nanostraws facilitate facile drug loading and tunable drug release, limit the influx of external molecules into the sealed drug reservoir, and increase the adhesion of devices to epithelial tissue. These findings highlight the potential of nanostraw microdevices to enhance the oral absorption of a wide range of therapeutics by binding to the lining of the GI tract, providing prolonged and proximal drug release, and reducing the exposure of their payload to drug-degrading biomolecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on electrospun nanofibers for oral drug delivery

Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics su...

متن کامل

pH-triggered drug release from biodegradable microwells for oral drug delivery.

Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followe...

متن کامل

Picoliter‐volume inkjet printing into planar microdevice reservoirs for low‐waste, high‐capacity drug loading

Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug d...

متن کامل

3D printing enables separation of orthogonal functions within a hydrogel particle.

Multifunctional particles with distinct physiochemical phases are required by a variety of applications in biomedical engineering, such as diagnostic imaging and targeted drug delivery. This motivates the development of a repeatable, efficient, and customizable approach to manufacturing particles with spatially segregated bioactive moieties. This study demonstrates a stereolithographic 3D print...

متن کامل

Imatinib loaded pegylated Poly Propylene Imine dendrimer for delivery to leukemic cells; fabrication of formulation and evaluation

PEGylated polypropyleneimine (PPI) dendritic scaffold was used for the delivery of an anti-leukemic drug, Imatinib. The current study evolves and emerges the use PEGylated PPI dendritic scaffold for the delivery of this drug. In this Imatinib was synthesized and loaded with PEGylated PPI dendritic scaffold. Parameters such as FT-IR, NMR, SEM, drug release, DSC and hemolytictoxicity are required...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2016